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Abstract

Depth estimation is the primary task for automated vehicles to perceive the 3D en-
vironment. The classical approach for depth estimation leverages stereo cameras
on the cars. This approach can provide accurate and robust depth estimation, but
also requires a more expensive setup and detailed calibration. The recent trend of
depth estimation, therefore, focuses on learning the depth from monocular videos.
These approaches only need an easy setup but may also be vulnerable to occlu-
sion or light condition changes in the scene. In this work, we propose a novel idea
that exploits the fact that data collected by large fleets naturally contains scenarios
where vehicles with monocular cameras drive close to each other and are looking
at the same scene. Our approach combines the monocular view of the ego vehicle
and the neighboring vehicle to form a virtual stereo pair during training, while
still only requiring the monocular image during inference. With such a virtual
stereo view, we are able to train self-supervised depth estimation by two sources
of constraints: 1) the spatial and temporal constraints between sequential monoc-
ular frames; 2) the geometric constraints between the frames from two cameras
that form the virtual stereo.
Public datasets for multiple vehicles sharing the common view to form possible
virtual stereo views do not exist, and so we also created our synthetic dataset using
CARLA simulator where multiple vehicles can observe the same scene at the same
time. The evaluation shows that our virtual stereo approach can improve the ego
vehicle’s depth estimation accuracy by 8%, compared to the approaches that use
monocular frames only.

1 Introduction

Accurate depth Estimation is essential for 3D autonomous perception. Downstream tasks like mo-
tion planning rely on accurate object depth for scene understanding. A LiDAR based setup is gener-
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Figure 1: Virtual stereo provides larger baseline for depth estimation which generate larger disparity
for any given depth value. Larger the disparity implies more sensitive the network is to depth errors
improving depth estimation

ally used for depth estimation and predicts a sparse point cloud that is then fused with camera data
by the means of projection. This approach is most accurate but requires precise extrinsic calibration
between the LiDAR sensor and the camera, making it expensive. It is also limited by sparse informa-
tion and phantom points caused by reflective surfaces. Other approaches rely on a calibrated stereo
camera setup that uses point correspondence based traditional computer vision techniques or deep
learning models for directly estimating depth. Recently monocular depth estimation has also pro-
duced encouraging results using deep learning algorithms that rely on supervised depth maps from
lidar or unsupervised view-synthesis algorithms for training Bian et al. [2019], Garg et al. [2016],
Eigen et al. [2014]. However monocular depth is an ill-posed problem and predicts depth to a scale.
It is also not as accurate as stereo or LIDAR and is very much prone to the downsides of data-driven
approaches like the inability to generalize to new scenarios or new domains.

A fairly new approach to monocular depth estimation that has shown promise, involves training
a deep learning model with a calibrated stereo setup using self-supervised photometric loss and
performing inference on monocular images, resulting in a more accurate depth estimation model.
However, this approach, though accurate, still faces two main challenges. The first challenge with
this approach is that it requires data collection with stereo cameras on-board. Many automotive
companies are doing data collection using their live fleet, and adding a stereo camera to the fleet will
add substantial cost. The second challenge is, for stereo, the depth resolution is directly proportional
to the baseline or the distance between the cameras Hartley and Zisserman [2000]. A wider baseline
is needed for better depth estimation at large distances, which is of prime importance in automotive
driving use cases. However, the physical constraints of a typical passenger car limits how wide the
stereo baseline could be.

In this paper, we propose a novel virtual stereo approach that exploits monocular cameras on dif-
ferent nearby vehicles to construct a virtual stereo pair. Our formulation is based on a practical
realization that as automotive companies are collecting data with the large live fleet, there will al-
ways be scenarios when two vehicles in the fleet are driving close to each other with a certain overlap
in the scene. For example, this would be a common occurrence in the cloud database of autopilot
compliant vehicles like Tesla, where there would be millions of instances where two Tesla vehicles
were driving close to each other and looking at the same scene from different viewpoints Herger
[2017]. A real world example of such a scenario is Ford AV dataset where multiple vehicles drive
close-by, looking at the same scene Agarwal et al. [2020]. Similarly, companies like Nexar are
heavily investing in developing crowd-sourcing based applications using dash-cam videos. They are
gathering the dash cam video footage originating from multiple vehicles operating in same zone to
enable these applications Nexar. Our solution exploits this data, that contains scene overlap in neigh-
boring vehicles, to construct virtual stereo during training and improves the self-supervised models
with additional geometric constraints. The improved self-supervised model is used for inference on
monocular images achieving better accuracy.

We illustrate the natural advantage of a wider baseline produced by virtual stereo with the plot in
Figure 1. The depth of a point under observation is a function of the disparity in pixels of the
projection of that point between the two stereo images. The larger the baseline, the larger is the
disparity for the same depth of the point. The photometric loss function is dependent on this disparity
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Figure 2: Overview of Architecture

generated between the target and source image due to the depth of the point. Model is more sensitive
to the errors in depth estimation if the corresponding disparity generated is larger because even small
errors in the depth would meaningfully change the disparity and hence the photometric loss. For self-
supervised monocular depth estimation, the disparity generated at large depth values is small due
to the smaller baseline. Large stereo baselines also lead to less overlap and a significant part of the
image with invalid disparity. However, in our framework, we use virtual stereo pair as an additional
loss constraint during training, and this allows us to only apply the loss constraint for pixels with
overlap i.e. valid disparity. Hence, our insight in this work is that virtual stereo can be effectively
used for training and allows us to use stereo with larger baselines, enabling to train on loss constraint
sensitive to larger depth values and improving the overall depth estimation performance.

We utilize virtual stereo pair to augment the ego vehicle’s self-supervised depth learning by adding
additional photometric loss in training using neighboring vehicle’s view. Given relative GPS mea-
surements or global pose guided transformation between two vehicles, the estimated depth can re-
construct the ego vehicle’s frame from the frame of the neighboring vehicle. The photometric loss
between the reconstructed image and the original image provides enhanced supervision on the depth
estimation. It is possible the images from the two cameras of a virtual stereo pair are substantially
different, e.g., due to occlusion or non-co-visible objects. To account for these scenarios, we pro-
pose an image similarity filter to discard image pairs that cannot form a reliable virtual stereo pair
due to lack of sufficient similarity.

Another challenge we face is the absence of datasets that can be used for training virtual stereo.
Automotive companies can create such a dataset from their proprietary data. But, to the best of our
knowledge, there are no publicly available datasets that can be used for training our virtual stereo
approach. Hence, we created our own dataset using the CARLA simulator that generates realistic
scenes with traffic and pedestrians in different urban scenarios and weather conditions. Our training
dataset is created for two typical urban town scenarios with 200 cars each in the scene and multiple
lanes for each direction, creating a dataset of more than 50000 training images and 1000 images on
a separate town as a test set. We compared our virtual stereo approach with approaches trained with
only self-supervised monocular depth estimation as well as stereo depth estimation. We show that
our approach can outperform the network trained using the monocular-only approach by 8% and
performs equivalent to the network trained on stereo images.

2 Related Work

Depth estimation algorithms exploit spatial and temporal cues from cameras mounted on one vehicle
or device to regress dense depths. Our approach extends the multi-view training signal by using
monocular images from cameras mounted on different vehicles creating a virtual stereo pair with a
large baseline.

2.1 Depth Estimation

Both supervised and self-supervised approaches are proposed for monocular depth estimation. The
supervised solutions Eigen et al. [2014], He et al. [2018], Repala and Dubey [2018], Liu et al.
[2016], Xu et al. [2018a,b], Fu et al. [2018], Xian et al. [2018] learn a direct mapping between an
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input RGB image and a depth map by comparing the estimated depth map and its corresponding
ground-truth. However, ground-truth depth maps are prohibitively expensive to obtain. On the
other hand, self-supervised approaches estimate depth by extracting depth cues from stereo image
pairs or monocular videos. Garg et al. Garg et al. [2016] introduced a warping loss based on
Taylor expansion. An image reconstruction loss with a spatial smoothness constraint was introduced
in Ren et al. [2017], Zhou et al. [2017a], Jason et al. [2016] to learn depth and camera motion.
Recent works Vijayanarasimhan et al. [2017], Zhou et al. [2017b], Mahjourian et al. [2018], Godard
et al. [2017, 2019] aim to improve depth estimation by further exploiting geometry constraints. In
particular, Godard et al. Godard et al. [2017] employed epipolar geometry constraints between
stereo image pairs and enforced a left-right consistency constraint in training the network. Yin et
al. Yin and Shi [2018] proposed GeoNet, which also used depth and pose networks in order to
compute rigid flow between sequential images in a video. More specifically, they introduced a
temporal, flow-based photometric loss to predict depth for monocular videos in an unsupervised
setting. This performed better than the photometric consistency loss of Zhou et al. [2017a]. We have
used an adaptation of this warping loss as part of our unsupervised temporal constraints. Bian et
al. Bian et al. [2019] used a similar approach along with a self-discovered mask to handle dynamic
and occluded objects. Gordon et al. Gordon et al. [2019] also addresses these issues using a
purely geometric approach. Casser et al. Casser et al. [2018] adapts a similar framework with an
additional online refinement model during inference. Xu et al. Xu et al. [2019] proposed region
deformer networks along with the earlier constraints to handle rigid and non-rigid motion. Zhou et
al. Zhou et al. [2019] exploited a dual network attention-based model which processes low and
high-resolution images separately.

2.2 Multi-view Perception

In literature, the relative camera pose estimation problem has been studied in the context of multiple
onboard cameras on the same vehicle or robot. These solutions exploit the large scene overlap and
are typically estimated by finding keypoint/feature or line correspondences between two images Nis-
ter [2004], Long Quan and Zhongdan Lan [1999], Elqursh and Elgammal [2011]. These features are
usually detected using SIFT Lowe [2004], SURF Bay et al. [2008] like algorithms and work well
for small changes in viewpoint. Recently, deep learning-based approaches have been proposed for
camera pose estimation. In PoseNet Kendall et al. [2015] a convolutional neural network (CNN) was
used for learning the 6 degrees of freedom (DoF) pose. The network was shown robust to lighting,
motion blur and knowledge of intrinsic camera parameters. Several extensions of PoseNet have been
proposed in Kendall and Cipolla [2015], Walch et al. [2016], Li et al. [2018]. The pose estimation
network in our approach follows a similar design, where the 6 DoF relative pose is learned from
input image pairs or image sequences.

3 Methods

Self-supervised depth estimation requires supervision from motion constraints to train a network for
the task. Current solutions use the series of images generated by a monocular camera and leverage
the temporal relationship between them along with motion information to guide training. However,
the cues used by this type of solution to learn depths can be easily affected by object occlusion, object
movement, or light condition change. Also, the depth learned from monocular cameras inherits
ambiguity due to various scenes with different depths that may project to the same image. Stereo
cameras can help resolve these issues. However, a conventional stereo setup requires significant
amounts of calibration efforts and higher costs, which is less cost-efficient compared to monocular
cameras. On the other hand, our proposed approach leverages the camera data from a nearby vehicle
to enhance the perception capability of the ego vehicle, specifically the accuracy of depth estimation.
Our proposed approach breaks the problem into the following parts: First, the ego vehicle selects
the images from a neighboring vehicle that captures a similar scene. Then, the images from both the
ego vehicle and the neighboring vehicle can serve as virtual stereo pairs. These virtual stereo image
pairs further provide additional stereo constraints on monocular depth estimation of the ego vehicle,
which potentially boosts the estimation accuracy.
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3.1 Depth Estimation with Virtual Stereo

In our proposed approach, an ego vehicle’s depth estimation is guided by two losses: 1) the loss
based on the spatial and temporal relationship of a few sequential images; 2) the loss based on the
virtual stereo pair.

3.1.1 Monocular Depth Estimation

In our model, the monocular depth estimation is established by enforcing the geometric constraints
between sequential images. The corresponding pixel coordinates representing points on a rigid
object in two consecutive frames are subject to

pt+1 = KTt→t+1(DT (pt)×K−1pt) (1)

where pt and pt+1 are the coordinates of a pixel in frames at time t and t+1, K denotes the camera
intrinsic parameters, and Tt→t+1 represents the relative camera pose between frame t and t + 1.
Based on pixels pt+1 in frame t+ 1, frame t can be reconstructed. The photometric difference (de-
noted by Lpe) between the reconstructed frame and the original frame t drives the depth estimation.

Lpe = α||Ŝt − St||1 + (1− α)DSSIM(Ŝt,St) (2)

where Ŝt and St are the reconstructed and the original frame t respectively. DSSIM Zhou Wang
et al. [2004] is applied to measure the similarity between two frames.

In addition, the object boundary observed in RGB images should be also preserved in estimated
depth maps. The difference of object boundaries and pixel gradients in RGB images and depth maps
is denoted by

Lsmooth = smoothing_loss(St,DT (St)) (3)

where St and DT (St) are the RGB frame and its corresponding estimated depth map, respec-
tively. Following Guizilini et al. [2020], we apply the function smoothing_loss(∗) to compute
the smooth loss.

Overall, the total loss for monocular depth estimation is

Lmono = αpeLpe + αsmoothLsmooth (4)

3.1.2 Virtual Stereo Depth Estimation

In this work, we augment the monocular depth estimation by utilizing the images captured by nearby
cameras to form virtual stereo image pairs. Two main steps involved in the process: 1) relative pose
estimation; and 2) remote image warping.

Ego-Remote Relative Pose Estimation The relative pose between cameras on the ego vehicle and
the remote vehicle in a virtual stereo pair is the essential element to transform the estimated depth
and pixel values in one camera’s coordinate to another. Similar to the relative pose estimation from
sequential images, the relative pose between the ego camera and the remote camera is also learned
directly from input image pairs.

Additionally, we propose to guide the relative pose learning with GPS and other sensor readings
from the two vehicles. These sensor data can provide highly accurate information regarding the
vehicle’s latitude, longitude, roll, yaw, and pitch. One may argue that GPS readings are prone to
environmental interference such as clouds, tall buildings, etc., and thus they are less reliable and
credible. However, as shown in previous studies Rostami et al. [2019], the error of GPS readings
demonstrates a strong temporal and spatial correlation. As a result, the GPS errors of the two nearby
vehicles within the same time window are less affected by the environmental errors. Based on the
readings of the vehicle sensors, the camera pose on a vehicle can be obtained by transforming the
vehicle’s GPS readings. The pose for the two cameras are written then in homogeneous form as a
4×4 matrix Tw

e and Tw
r , respectively:

Tw
e =

[
Rw

e twe
01×3 1

]
and Tw

r =

[
Rw

r twr
01×3 1

]
(5)
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where Rw
e and twe represent the rotation and translation of the ego vehicle’s camera in the world co-

ordinates, respectively. Similarly, Rw
r and twr are the rotation and translation for the remote vehicle’s

camera, respectively. The relative pose between two cameras can be as

Tr
e = inv(Tw

r ) ·Tw
e (6)

Here, inv(∗) represents the inverse operation of a matrix. In our implementation, we use this GPS-
guided relative pose as a weak supervision signal in learning the relative pose between the ego and
the remote cameras.

Remote Image Warping With the relative pose between the ego camera and the remote camera,
we can reconstruct an ego camera’s frame by warping the corresponding frame captured by the
remote camera.

pr = KrTr
e · (DT (p

e)× (Ke)−1pe) (7)

Eq. 7 transforms a pixel coordinate on an ego camera’s frame to its correspondence on the remote
camera’s frame, where Ke and Kr are camera intrinsic matrix of the ego camera and the remote
camera; DT (p

e) represents the corresponding depth value of pixel pe. By sampling pixels in the
remote camera’s frame according to pr, we can reconstruct an ego camera’s frame, denoted by Ŝ.
Therefore, the photometric loss between the warped frame Ŝ and its original frame S can further
provide an additional constraint on depth estimation. The loss of the virtual stereo is defined as

Lv_stereo = α||Ŝ − S||1 + (1− α)DSSIM(Ŝ,S) (8)

Total Loss Combining the loss from both monocular and virtual stereo component, we have

Ltotal = Lmono + αv_stereoLv_stereo (9)

where αv_stereo is used to adjust the importance of loss Lv_stereo.

4 Evaluation Methodology and Virtual Stereo in the Wild

In our approach, we use the virtual stereo to augment the offline training for depth estimation. Hav-
ing stereo images from nearby vehicles provides better supervision for training and thus increase our
accuracy. A simple way to use two images as a virtual stereo pair is to find overlap between images.
If the overlap is significant, then we can choose this pair for training. However, it would be com-
putationally expensive to try a pair-wise comparison with each image. Instead, each image/video is
often stored with GPS location/locations, we therefore would monitor the GPS location and heading
to filter out cars traveling in same direction, and use that to get first order filtered data. Even with
GPS filtering, there is a big challenge with this approach. A pair of images would benefit virtual
stereo, only when they have significant matching features. This is the same issue that is faced by a
real stereo image system when estimating depth for a textureless plane. Clearly, we can’t use any
stereo pair with enough overlap to train our network. In this section, we will present our approach
to identify and filter useful virtual stereo pairs for training, based on feature matching.

4.1 Image Similarity-based Stereo Pair Selection

One of the most widely used techniques to describe an image is to identify key-points in an image,
which capture the different features present in that image. This technique is commonly used in
SLAM and image matching problems. We use SIFT (Scale Invariant Feature Transform) to identify
several keypoints and their descriptors in an image. For each candidate virtual stereo pair, we extract
the (keypoint, descriptor) tuples. These keypoints are matched across the two images to find out
common keypoints. Each of these matches has a particular distance in feature space. The higher the
distance, the worse is the match. We pick the top 50 matches out of these and average their distances
to get the image similarity number for the candidate pair. If this number is greater than a certain
threshold then we select the candidate virtual stereo pair for training.

Sky removal: Another major challenge with this approach is the presence of the sky. Between the
two images of virtual stereo pair, a large section of the image is the sky, which is quite similar. The
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keypoints associated with the sky have lesser distances as they match quite well. Due to this, they
saturate the image similarity index, leaving little room for the actual environmental features to have
an effect on the image similarity index. Hence, we need to remove these sky-based matches to get
a better estimate of image similarity. We observe that though the keypoints belonging to the sky
match quite closely, they belong to the region of the image that has a very high depth value. Pixels
corresponding to very high depth have a very small disparity between the location of pixels in stereo
images. Hence we filter out all the small disparity matches and effectively remove all the sky-based
matches.

In conclusion, reaping the benefits of virtual stereo requires searching for pairs of images that have
an overlap in the scene with similar features. Using a geo-location-based filter will provide us with
a pool of potential candidates for training images. The image similarity filter finally helps us select
the images with similar features from the above pool, that can be used for virtual stereo training.

5 Dataset Generation

Currently, there are no publicly available datasets for our training, where multiple cars are collecting
data and storing with GPS coordinates in the cloud. In this work, therefore we used the CARLA
simulation engine Dosovitskiy et al. [2017] to generate our own dataset for the task of depth esti-
mation using a virtual stereo vehicle pair 1. The CARLA simulation engine provides realistic scene
rendering for autonomous driving. We collected our dataset by rendering several urban driving sce-
narios with vehicles, pedestrians, trees, roads, buildings, fences etc. The townscapes were chosen
to include significant complex structures such as a 5-lane junction, a roundabout, unevenness, a tun-
nel, and a bridge to better model common real-world scenarios. We used the following method to
generate our training dataset:

First, we obtained a series of images from multiple cars traveling in the urban environment. To
ensure correspondence to realistic scenarios, we tried to model our dataset to the widely used
KITTI Menze and Geiger [2015] dataset. We followed KITTI’s camera configurations (the height,
FoV of the camera, and other parameters are the same as in the KITTI dataset). We ensured that our
dataset has relatively narrow roads, a considerably high number of pedestrians and (stationary) cars
along the road. Figure 3 shows the comparison of depth distribution between our collected dataset
and the KITTI dataset for three sample classes of Vehicles, Vegetation, and Traffic sign. As shown,
our collected dataset closely follow real-world data depth distribution.

Each vehicle was equipped with RGB, semantic segmentation, and depth cameras. For GPS read-
ings, we use the world coordinates provided by CARLA and add errors to emulate real-world a GPS
sensor. Using these, we recorded each vehicle’s RGB, depth, relative pose in global coordinates,
acceleration, velocity, and semantic segmentation. Additionally, we also equipped all the vehicles
with stereo cameras to compare with stereo performance with a baseline of 3m. We use Tesla model
3 with dimensions of length = 184.8 in, Width = 72.8 in and Height = 56.8 in as our ego vehicle.
Pose information is used to simulate GPS location for evaluation purposes. The ground-truth GPS
measurements are added with error as modeled similar to Rostami et al. [2019], Joubert et al. [2020].
We then use the filtering techniques as explained in the previous section to get a data-set with im-
ages from two cars (ego-vehicle and nearby vehicle), moving next to each other. We gathered around
50,000+ pairs of associated object images from different scenes out of all the data we collected. We
only use this filtered virtual stereo pair-based data for training our network. Finally, for our test set,
we collected 1000 images from a single car moving in a different urban environment, to ensure the
generalizability of our approach. Note that the test set contains only monocular images.

6 Implementation Details and Experiment

Model Architecture We build our virtual stereo architecture based on PackNet Guizilini et al.
[2020], a state-of-the-art self-supervised depth estimation architecture. PackNet consists of two
main components, a depth estimation module and a contextual pose estimation module. The depth
estimation module follows an encoder-decoder architecture and incorporates several packing and
unpacking blocks with skip connections to facilitate gradient flow. The contextual pose estimation

1We plan to release our datasets to be used by the research community. Refer to Supplementary material for
more information
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module takes a target image and a few contextual images as input and regresses a 6-DOF pose.
Our pose estimation network consists of seven convolutional layers and one 1 × 1 convolutional
layer. Additionally, we add an ego-remote relative pose estimation module to learn the relative pose
between the ego camera and a remote camera that is mounted on a nearby vehicle. The design of
this module largely follows the architecture proposed in Zhou et al. [2017a]. Similar to the left-
right consistency proposed in Godard et al. [2017], we augment the monocular depth estimation by
injecting the ego-remote consistency loss in learning.

Model Training We implement our models using PyTorch 1.6 Paszke et al. [2019] and select
Adam method Kingma and Ba [2014] as the optimizer with β1 = 0.9 and β2 = 0.999. The initial
learning rate of the depth estimation module, the contextual pose estimation module and the ego-
remote relative pose estimation module are set to 2 × 10−4. In the depth estimation module, the
SSIM weight, α, is set to 0.85 and the smoothing loss weight, αsmooth, is set to 10−3. As to the
contextual pose estimation module, we use one center image at time t and two contextual images at
time t − 1 and t + 1 as input images. For the ego-remote relative pose estimation module, we take
one image from the ego vehicle and one from the virtual stereo pair as input. The weight of virtual
stereo αv_stereo is set to 0.05 in our experiments. We select 59169 images to form the training set
and evaluate our model performance on 1000 images. The input image size is 640× 192. We train
our model on four Nvidia 1080Ti GPUs. The training takes 1.3 hours for each epoch, while in the
testing phase, the model runs at 23.15 images/s.

Method Error-related metrics Accuracy-related metrics
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

depth capped at 80m
Monocular Only 0.1132 1.5978 7.7336 0.2815 0.8370 0.9039 0.9455

Monocular + Virtual Stereo 0.1041 1.4775 7.2735 0.2595 0.8528 0.9154 0.9516
Monocular + Local Stereo 0.1059 1.5214 7.4440 0.2710 0.8454 0.9045 0.9476

depth capped at 120m
Monocular Only 0.1254 2.5955 12.3015 0.3402 0.8214 0.8873 0.9290

Monocular + Virtual Stereo 0.1146 2.3312 11.3786 0.3118 0.8370 0.9001 0.9379
Monocular + Local Stereo 0.1173 2.4506 11.8120 0.3278 0.8296 0.8883 0.9324

Table 1: Depth estimation performance comparison between our virtual stereo approach, monocular
only approach and the conventional local stereo approach

7 Depth Estimation Evaluation

Quantitative Comparison Table 1 shows a performance comparison between the virtual stereo
approach and the monocular-only approach with respect to various performance metrics. The com-
parison is capped to 80 m and 120 m, respectively. One can observe that the virtual stereo approach
outperforms the monocular-only approach by 8%. It is because the virtual stereo pairs provide ad-
ditional geometric constraints while learning the depth from the input images. These additional
constraints help enhance the self-supervised models, which otherwise have weak depth cues by
monocular sequential images. Additionally, we show that the virtual stereo approach (enhanced
self-supervised model) can achieve better performance on monocular images as compared to the
local stereo approach where stereo camera images are used with a stereo-depth estimation algorithm
(mounted on the same car). But, the virtual stereo approach is more cost-efficient as only low-cost
monocular cameras are required in the system setup.

Qualitative Comparison In Figure 4, we present the qualitative comparison between the local
stereo approach and our virtual stereo approach. The selected scenarios are challenging as the light
condition is dynamically changing. One can observe that our virtual stereo approach can produce
comparable or even better depth estimation than the local stereo approach. The observation visually
validates the effectiveness and robustness of our approach.

Robustness Study As described in Section 4, our proposed approach first implicitly selects can-
didate training images based on their host vehicles’ GPS readings. Moreover, we also use GPS
measurements aggregated with other sensor readings like IMU, to guide the learning of ego-remote
relative pose. The two processes are subject to GPS errors. To understand the importance and impact
of the GPS readings to our model, we present the depth estimation performance under various levels
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Figure 3: Depth distribution compari-
son between our dataset and the KITTI
dataset

Figure 4: Qualitative evaluation of depth estimation:
column (a): input RGB images; column (b): predicted
depth maps using local stereo approach; column (c):
predicted depth maps using virtual stereo approach

of GPS errors in Table 2. Note that, in this study, we primarily focus on the impact of GPS readings
on the relative pose learning.

Relative Rotation Error Relative Translation Error Error-related metrics Accuracy-related metrics
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

w/o GPS supervision w/o GPS supervision 0.1062 1.5720 7.2470 0.2612 0.8545 0.9166 0.9522
N (µ = 0, σ = 0.0) N (µ = 0, σ = 0.0) 0.1040 1.4554 7.0095 0.2513 0.8586 0.9230 0.9569
N (µ = 0, σ = 0.01) N (µ = 0, σ = 0.5) 0.1041 1.4775 7.2735 0.2595 0.8528 0.9154 0.9516
N (µ = 0, σ = 0.1) N (µ = 0, σ = 5.0) 0.1068 1.4715 7.0729 0.2514 0.8561 0.9178 0.9542

Table 2: Performance comparison with different error models in GPS-guided pose estimation

In this study, we separately model the rotation error and the translation error, and inject errors to the
ground-truth GPS readings from CARLA simulations. For the rotation error, it is generated by the
vehicle’s pitch, roll, and yaw measurements derived from GPS measurements and can be adjusted
by the vehicle’s internal inertial sensors. For translation error, it is primarily computed based on the
GPS readings from the both nearby vehicles. Both errors are modeled following the model in Joubert
et al. [2020]. Comparing row 1 and row 2 in Table 2, with near perfect GPS readings, the absolute
relative error is improved by an additional 2% with respect to the cases where GPS information is not
applied in relative pose estimation. We then extended the study to larger GPS errors. With translation
error of 50 centimeters in row 3, only marginal performance degradation is observed. In row 4, good
performance remains even under the challenging scenarios with extreme high GPS errors. The core
insight from this study is that our GPS-guided pose estimation algorithm is robust and reliance
on GPS readings. Note that the GPS errors mentioned in the paper are relative errors instead of
absolute errors. Two adjacent GPS receivers will be affected by similar environmental interference,
e.g., cloud blockage, and thus the errors of the two GPS readings will suffer from similar biases.
Therefore, even if the absolute GPS errors are high, the errors for the relative positioning of the two
vehicles may still be low. This has been experimentally validated in Ahmed-Zaid et al. [2011].

8 Conclusion and Future Work

In this paper, we propose a simple yet practical depth learning augmentation approach for self-
supervised depth estimation. In the proposed approach, monocular images collected from neighbor-
ing vehicles are leveraged to form virtual stereo pairs, and ego vehicle’s depth estimation is aug-
mented by adding additional photometric constraints provided by the neighboring vehicle’s view.
We argue that this is a practical approach given automotive companies are collecting camera data
with the large live fleet and there should be many instances where naturally two or multiple vehi-
cles drive close to each other while collecting data observing the same scene. We have also made
a contribution in this paper by creating the first virtual stereo dataset using the CARLA simulator.
The dataset contains more than 50000 training images and 1000 test images. We compare our vir-
tual stereo approach with approaches only trained with monocular images as well as conventional
stereo approaches. The evaluation results show that our virtual approach can achieve around 8%
performance gain. As future work, we will extend our datasets to more traffic and road scenarios.
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